
Abstract - Fluorescence imaging provides a comprehensive view 
of the electrical behavior of excitable cells, the relative nature of 
the optical signals however requires additional means for 
calibration. The determination of the actual electrical field 
strength is subject to uncertainty even when using concurrent 
electrode measurements. A combined approach of electrical field 
measurement and optical mapping of the spatially distributed 
polarizations provides a satisfying calibration of the optical 
signals in our field-stimulation experiments. 
Keywords - Optical potential-mapping, fluorescent dye, action 
potential, electric field-stimulation 

 
I. INTRODUCTION 

 
Using fluorescence imaging for optical potential mapping has 
been established as a powerful tool to gain thorough insight 
into the complex behavior of cardiac activation. It is 
particularly suited to observe the excitation process of 
cardiomyocytes exposed to electrical fields. 
 

Still there remain a number of problems to be addressed, 
when using this experimental method to authentically record 
the actual electrical membrane behavior.  In the absence of 
additional electrode measurements from the cell or accurate 
estimates of the effective electric field in the bath, the 
observed light signals only provide information about relative 
potential changes. To measure the applied field strength 
simultaneously with the optical recording, additional 
electrodes sensing the actual voltages in the bath would be 
necessary. However, in many experimental situations this is 
not feasible. Moreover measuring the electric field strength 
separately immediately before or after the actual stimulation 
experiment is also subject to uncertainty. Our effort was to 
develop an approach using the combined information from 
simultaneous as well as consecutive recordings to properly 
calibrate optical signals and to get acceptable estimates for 
the potential gradients when no auxiliary measurements from 
separate field sensing electrodes are available. 
 
 

II. METHODOLOGY 
 
A. Problems 
 
In our experiments single ventricular cardiomyocytes are 
stained with the voltage sensitive dye di-4-ANEPPS. The 
response to electrical stimulation is recorded by a 10x10 
photodiode-array allowing for a spatial resolution of 
15 µm ([1]). In field-stimulation experiments stimulus pulses 
of varying strength, duration and orientation are applied using 

a controlled current source. Because of inevitable fluctuations 
of the bath-height, the stimulus current can only be used as a 
rough estimate for the actually applied field strength. 
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The signals generally cumulate noise and deterministic 
artifacts from the light source, the optical detectors, the 
amplifier, and the experimental environment.  Due to high 
light intensities of about 100 W/cm-2 dye bleaching occurs. 
Local variations of dye uptake into the membrane and 
inhomogeneous distribution of the excitation light result in 
considerable dispersion of the effective voltage-sensitivity 
(the percentage change of the fluorescent light intensity 
related to a membrane potential change). 
 

As the observed signals only provide information about 
relative potential changes, proper scaling to membrane 
potentials is usually based on the observed change of the 
membrane potential from resting state to plateau state or the 
average action potential amplitude of cardiomyocytes 
recorded with patch-electrodes ([1], [2]).  

 
In this work, the experimental records cover a period of 

about 10 ms after field stimulus application. Attempts to 
calibrate a series of consecutive records from the same cell 
with different field strengths support the assumption that not 
only the time-course of the evolving action potential but also 
the action potential amplitude depend on the applied field-
stimulus strength. Action potential amplitude can therefore 
not be used as a general measure for calibrating the optical 
signals. 

 
 

B. Approach  
 
First, the optical signals are low pass filtered using a zero-
phase finite impulse response filter ([3]). 
 

Estimates for local voltage-sensitivities and correcting 
functions to account for dye bleaching were determined for 
every recording, assuming a common resting potential for all 
measuring spots within a cell before stimulus-application and 
also assuming that the cell exhibits a common potential again 
after a sufficiently long period subsequent to the stimulus 
application for all measuring spots within a particular cell. 
 

Appropriate scaling of a sequence of recordings from a 
particular cell then comprises a two-step procedure. From the 
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sequence of recordings we first select a "reference recording" 
with stimulation close to excitation threshold, as under this 
condition the cell response most closely resembles a “natural” 
elicited action potential. We then calibrate the optical signals 
of this particular experiment assuming an action potential 
amplitude of 128 mV.  The optical signals of the remaining 
recordings from the particular cell can then scaled based on 
their relative fluorescent light intensity ∆F/F. This allows an 
unbiased investigation of the effect of stimulus height and 
duration on the stimulus response.  
 
To validate our approach we finally conducted experiments 
where we also measured bath impedance immediately after 
each stimulus using two auxiliary electrodes. This allowed 
getting bath-level-corrected estimates for the applied 
electrical field strength from the commanded stimulus current 
values used to generate the electrical field in the bath. 
 
 
 

III. RESULTS 
 
 
Figure 1 shows the strong linear correlation between the 
estimated gradient for the membrane potential based on the 
local polarizations and the bath-level-corrected stimulus 
amplitudes (r=0.997) for a total of 12 stimulation experiments 
with the same cell.  Common scaling is based on a reference-
recording with a 4 ms stimulus of 4.2 V/cm for that particular 
cell.  
 
 

IV. DISCUSSION 
 
Light intensity response may not linearly depend on the 
membrane potential. Linearity in the dye-response to voltage 
changes has previously been verified for physiological rage of 
potentials ([1]) and has been confirmed to be a valid 
assumption at least in the range -280 to +140 mV ([2]).  
While the membrane potential at the distant regions of a cell 
may be polarized beyond the range of linearity for high field 
strengths, in our experiments we can make use of measuring 
spots closer to the center of the cell, where the membrane 
potential is definitely in the region of verified linear dye-
response. 
 
While it would be possible to reduce bath level fluctuations 
by an overall increase of the bath level, this is not desirable 
for other practical reasons. 
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Fig. 1. Estimated field-strength from optically recorded membrane 
polarizations versus bath-level-corrected stimulus amplitudes. 

 
 
 

V. CONCLUSIONS 
 
With our approach we were able to demonstrate that it is 
possible to calibrate fluorescence light intensities to 
membrane potentials for a sequence of recordings from the 
same cell using a reference recording with close-to-threshold 
stimulus. The responses to stimuli with increased amplitude 
can then be properly scaled with respect to the averaged 
fluorescence light intensities. 
 
The problem of possible nonlinearities in the voltage response 
of the dye can be overcome for fieldstrength-estimation by 
using close located measuring spots. 
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